Evren Her Yönde Aynı Mıdır?

Evrenin her yönde aynı olup olmadığı, kozmolojide uzun süredir tartışılan ve araştırılan bir konudur. Genel olarak, evrenin izotropik ve homojen olduğu kabul edilir.

Haber Merkezi / Bu durum, kozmik mikrodalga arka plan ışıması (CMB) gibi gözlemlerle desteklenir. CMB, Büyük Patlama’dan kalan ve evrenin her yönünde neredeyse aynı sıcaklıkta (yaklaşık 2.7 Kelvin) yayılan bir ışıma olarak ölçülmüştür.

Bu homojenlik ve izotropi, evrenin geniş ölçekte aynı fiziksel yasalarla işlediğini ve yönlerden bağımsız olarak benzer özellikler gösterdiğini düşündürmektedir. Bu, kozmolojik ilke olarak bilinir.

Ancak, bu izotropi tam anlamıyla mükemmel değildir. CMB’de çok küçük sıcaklık dalgalanmaları (yaklaşık 1/100.000 ölçeğinde) tespit edilmiştir ve bu farklılık, evrenin erken dönemindeki kuantum dalgalanmalarından kaynaklanarak galaksilerin oluşumuna yol açmıştır.

Yani, detaylara inildiğinde evren her yönde aynı değildir; yıldızlar, galaksiler ve diğer yapılar farklı konumlarda bulunurlar.

Gözlemlenebilir evren (ışık hızı ve evrenin yaşı nedeniyle görebildiğimiz kısım) izotropik görünse de, gözlemlenebilir alanın ötesinde ne olduğu şu an için bilinmez konumda. Bazı teoriler (örneğin, çoklu evren hipotezi) evrenin farklı bölgelerinin farklı özelliklere sahip olabileceğini öne sürmekte, ancak bu deneysel kanıtlarla desteklenmemiştir.

Evrenin oluşumu, insanlık tarihinin en büyük sorularından biri olmuştur ve bu konuda farklı bilimsel teoriler, felsefi yaklaşımlar ve dini inançlar öne sürülmüştür.

Büyük Patlama (Big Bang) Teorisi: Günümüzde bilim dünyasında en çok kabul gören teoridir. Evrenin yaklaşık 13,8 milyar yıl önce, sonsuz yoğunluk ve sıcaklıkta bir noktadan (singülerite) genişleyerek oluştuğunu savunur.

Durağan Durum (Steady State) Teorisi: Büyük Patlama’ya alternatif olarak 20. yüzyılda önerilen bu teori, evrenin başlangıcı olmadığını ve sonsuz bir geçmişe sahip olduğunu savunur. Evren genişlerken, sürekli olarak yeni madde yaratılır ve evrenin genel yapısı değişmez.

Çoklu Evren (Multiverse) Teorisi: Büyük Patlama’nın bir parçası veya alternatif bir yorumu olarak, bilinen evrenin tek olmadığı, birden fazla evrenin (paralel evrenler) var olabileceğini önerir.

Siklik (Döngüsel) Evren Modeli: Evrenin bir genişleme ve büzülme döngüsü içinde olduğunu öne sürer. Yani, Büyük Patlama bir başlangıç değil, bir önceki evrenin çöküşünden sonraki bir olaydır.

Plazma Evren Modeli: Büyük Patlama yerine, evrenin plazma ve elektromanyetik kuvvetlerin etkisiyle şekillendiğini savunur. Nobel ödüllü fizikçi Hannes Alfvén tarafından önerilmiştir.

Felsefi ve Dini Yaklaşımlar: Bilimsel teorilerin yanı sıra, evrenin oluşumu hakkında felsefi ve dini açıklamalar da bulunmaktadır. Bunlar bilimsel teorilerle çelişebilir veya tamamlayıcı olarak görülebilir:

Teistik Yaklaşımlar: Birçok dini gelenek, evrenin bir yaratıcı (Tanrı) tarafından oluşturulduğunu savunur. Örneğin, Hristiyanlık, İslam ve Yahudilik gibi tek tanrılı dinlerde evrenin bir başlangıcı olduğu ve Tanrı tarafından yaratıldığı inancı vardır.

Panteizm ve Panenteizm: Evrenin kendisinin ilahi olduğunu (panteizm) veya evrenin bir ilahi varlığın parçası olduğunu (panenteizm) savunan felsefi yaklaşımlar.

Doğu Felsefeleri: Hinduizm ve Budizm gibi geleneklerde, evren döngüsel bir süreç olarak görülür ve zamanın başlangıcı veya sonu olmayabilir.

Simülasyon Hipotezi: Modern bir felsefi ve bilimsel hipotez olarak, evrenin bir tür gelişmiş bilgisayar simülasyonu olabileceğini öne sürer. Bu fikir, Nick Bostrom gibi düşünürler tarafından popüler hale getirilmiştir.

Paylaşın

Bilim İnsanları Yaşama Elverişli Yeni Bir Gezegen Keşfetti

Dünya’nın kütlesinin yaklaşık altı katı büyüklüğünde yaşamaya elverişli yeni bir gezegen keşfedildi. Güneş’e çok benzeyen bir yıldızın yörüngesinde yer alan gezegen yaklaşık 20 ışık yılı uzaklıkta.

Gökbilimciler, etrafında döndüğü yıldızın yaşanabilir bölgesinde yer alan ve yüzeyinde sıvı su barındırabilecek denli uygun sıcaklıklara sahip bir ötegezegen keşfetti.

Yüzeyinde sıvı halde su bulundurabilecek koşullara sahip gezegenler, ‘yaşanabilir bölgede’ diye tanımlanıyor. Zira gezegenler yıldıza daha yakın olduklarında sıcaklık arttığı için su buharlaşıyor, daha uzak olduğunda ise su donuyor. Yaşanabilir bölgede yer alan gezegenler ise tıpkı Dünya gibi daha uygun sıcaklık koşullarına sahip oluyor. Bu yüzden bu gezegenler, yaşam barındırması muhtemel cisimler olarak görülüyor.

Hakemli bilimsel dergi Astronomy & Astrophysics’te yayınlanan yeni bir çalışmada ayrıntılı olarak açıklandığı üzere, HD 20794 d adı verilen yeni gezegen, Dünya’nın kütlesinin yaklaşık altı katına sahip. Üstelik HD 20794 d, Güneş’e çok benzeyen bir yıldızın yörüngesinde dönüyor ve nispeten yakında, 20 ışık yılı uzaklıkla yer alıyor.

Bu da onu gökbilimcilerin bildiği en yakın “potansiyel olarak yaşanabilir” gezegenlerden biri yapıyor. Gezegen hakkında hala cevaplanması gereken bazı önemli sorular var ve üzerinde yaşam olup olmadığını kesinkes söylemek için henüz çok erken. Ancak gökbilimciler yaşanabilirlik konusunda son derece umutlu.

Oxford Üniversitesi’nden astrofizikçi ve çalışmanın ortak yazarı Michael Cretignier, “Gezegenin varlığını doğrulayabilmek benim için büyük bir mutluluktu,” dedi ve ekledi: “Çok yakın olması nedeniyle, gelecekteki uzay görevlerinde bunun bir görüntüsünün elde edilmesi için de umut var.”

Futurism’in aktardığına göre, gezegenin etrafında döndüğü 82 G. Eridani adlı yıldız, Güneş gibi bir sarı cüce. Güneş’in kütlesi bu yıldızınkinin yüzde 80’ine denk geliyor. Ancak bu yıldız Güneş’ten daha yaşlı ve biraz daha sönük.

Bunun yanı sıra HD 20794 d’nin yörüngesi eliptik. Bu nedenle yıldızından uzaklığı önemli ölçüde değişebiliyor. Bu da gezegenin yüzeyindeki koşulları epey değişken hale getirebilir, önemli sıcaklık değişimleri olabilir. Örneğin gezegen yolunun en uzak noktasındayken suyu donabilir. Yine de bilim insanları, bu gezegeni mutlaka araştırmak gerektiğini düşünüyor.

Cretignier, “Yaşanabilir bir bölgede yer alması ve Dünya’ya nispeten yakın olması nedeniyle bu gezegen, potansiyel yaşamı gösteren biyolojik belirtileri aramak için ötegezegenlerin atmosferlerini karakterize edecek gelecekteki görevlerde önemli bir rol oynayabilir,” ifadelerini kullandı.

(Kaynak: Euronews Türkçe)

Paylaşın

Evrenin Yüzde 95’i Hakkında Hiçbir Şey Bilmiyoruz

“Şimdiye kadar hiç kimse bu garip olgunun nasıl ortaya çıktığını açıklayamadı, ve karanlık enerjiyi açıklamak modern bilimin en zorlu sınavlarından biri olmaya devam ediyor.”

Haber Merkezi / Üsteki alıntı, yazar ve fizikçi Guido Tonelli’nin “Madde: Muhteşem İllüzyon” adlı eserinden.

“Madde: Muhteşem İllüzyon”, karanlık enerjinin keşfini ve evrenin genişlemesini yönlendirdiği bilinen bu garip olguyu açıklamaya yönelik çok sayıda araştırmayı yeniden değerlendiriyor.

Karanlık enerjinin keşfi, herkes için tam bir sürprizdi. Bilim insanları, karanlık enerjiye ilişkin veriler karşısında gözlerine inanamadılar. Ama, veriler karanlık enerjinin varlığına ilişkin şüpheye yer bırakmıyordu.

Evrenin genişlediği hız sabit değildi; aksine, bir süredir her şey her şeyden giderek daha hızlı bir şekilde uzaklaşıyordu.

Bilim insanlarının gördükleri, bekledikleriyle çelişiyordu; durum, evrenin ivmeli genişlemesi fikrine aykırıydı. Bilim insanları, yerçekiminin uyguladığı kuvvetin uzay – zamanın genişleme hızını azaltacağını bekliyordu, ama tam tersi oluyordu.

Bilim insanları, uzun yıllar boyunca, verilerin işaret ettiği şeyin gerçek olup olmadığını veya ölçümlerde hatalar yapılıp yapılmadığını anlamaya çalıştılar, ve sonunda verilerin doğru olduğunu kabul etmek zorunda kaldılar.

Yeni bir doğal olgunun gözlemlendiğine dair hiçbir şüphe yoktu, ancak bu durum tamamen beklenmedikti.

Stockholm’deki İsveç Kraliyet Bilimler Akademisi, karanlık enerjinin keşfini gerçekleştiren Saul Perlmutter, Brian Schmidt ve Adam Riess’in araştırmalarını kabul etti ve bu bilim insanlarını keşiflerinden dolayı 2011 Nobel Ödülü ile ödüllendirdi.

Her şeyi her şeyden uzaklaştıran ve kesinlikle bilinmeyen bir enerji türü: Karanlık enerji.

Karanlık enerjiye ilişkin bir grup bilim insanı, bir tür anti yerçekimi, çekici olmaktan çıkıp itici hale gelen aşırı garip bir yerçekimi fikrini öne sürerken, bir grup bilim insanı da, pozitif bir enerji fikrini öne sürdü.

Pozitif enerji fikri yıllar öncesine dayanır, bu fikri ilk ortaya atan Albert Einstein’dı.

Bu gizemli enerji biçiminin kökenini anlamaya çalışan bilim insanları, evrenin genişleme hızının, farklı bölgelerde, aynı olup olmadığını saptadılar, ve bu olgunun sonradan baskın hale geldiğini fark ettiler. Evren, uzun bir süre boyunca, şu anki hızından farklı bir hızda genişledi.

Ancak, şimdiye kadar hiç kimse karanlık enerjinin neden veya nasıl ortaya çıktığını açıklamayı başaramadı ve karanlık enerji modern bilimin en zorlu sorularından biri olmaya devam ediyor.

Karanlık enerjinin kökenine dair bilinmezlik devam etse de, karanlık enerjinin evrenin geometrisi ve maddenin yoğunluğundaki mekansal dalgalanmalar üzerindeki etkilerinin ölçümleri, bu bileşenin evrenin maddi bileşimindeki ağırlığının ölçülmesini mümkün kılmıştır.

Sonuç, karanlık enerji evrenin toplam kütlesinin yaklaşık yüzde 68’ine katkıda bulunuyor. Evrenin yaklaşık üçte ikisi bu bilinmez bileşenden oluşuyor.

Karanlık enerjinin katkısını da topladığımızda, evrenin yüzde 95’i hakkında hiçbir şey bilmediğimizi kabul etmek zorunda kalıyoruz.

Paylaşın

Genişleyen Evren Teorisine Meydan Okumak: Karanlık Enerji “Yok”

Karanlık enerji, bilimin en büyük gizemlerinden biri olmaya devam ediyor. Bilim insanları, geçtiğimiz yüzyıl boyunca, Evren’in her yöne doğru genişlediğini ileri sürdüler.

Haber Merkezi / Bilim insanları, karanlık enerji fikrini de, açıklayamadıkları fiziğin yerine geçen bir kavram olarak kullandılar.

Yeni Zelanda’nın Christchurch kentindeki Canterbury Üniversitesi’nden bir grup bilim insanı, Tip Ia süpernovalarının geliştirilmiş ışık eğrisi analizini kullanarak, Evren’in “daha engebeli” bir şekilde genişlediğini ileri sürerek, geleneksel anlayışa meydan okuyor. Araştırmada yer alan bilim insanlarına göre, karanlık enerji yok.

Mevcut anlayış, Evren tekdüze bir şekilde genişlediğini varsayar.

Boş bir uzayda zaman bir galakside olduğundan daha hızlı geçer, çünkü yer çekimi, zamanı yavaşlatır. Araştırmaya göre, Samanyolu’ndaki bir saat, Evren’deki boşluklardaki ortalama bir saatten yaklaşık yüzde 35 daha yavaştır; bu da bu boşluklarda milyarlarca yıl daha geçeceğini göstermektedir. Evren’in genişlemesi hızlanıyor gibi görünmektedir, çünkü Evren’de uzanan boş boşluk ne kadar genişlerse, genişleme için o kadar fazla alan sağlar.

Araştırmayı yöneten Profesör David Wiltshire, “Bulgularımız, evrenin giderek artan bir oranda genişlemesinin nedenini açıklamak için karanlık enerjiye ihtiyacımız olmadığını gösteriyor” diyor ve ekliyor: Karanlık enerji, içinde yaşadığımız evren kadar engebeli bir evrende, genişlemenin kinetik enerjisindeki değişimlerin yanlış tanımlanmasıdır.

“Araştırma, genişleyen evrenimizin tuhaflıkları etrafındaki temel sorulardan bazılarını çözebilecek ikna edici kanıtlar sunuyor” diyen David Wiltshire, “Yeni verilerle evrenin en büyük gizemi on yılın sonunda çözülebilir” ifadelerini kullanıyor.

Karanlık enerji, Evren’in kütle – enerji yoğunluğunun yaklaşık üçte ikisini oluşturur ve genel olarak maddeden bağımsız olarak işleyen zayıf bir anti-yerçekimi kuvveti olduğuna inanılır.

Karanlık madde ve karanlık enerji nedir?

Karanlık madde, evrenin yapısının muhtemelen yaklaşık yüzde 27’sini oluşturduğu düşünülen gizemli bir maddedir. Nedir? Ne olmadığını söylemekten biraz daha kolaydır.

Lambda Soğuk Karanlık Madde Modeli (diğer adıyla Lambda-CDM modeli veya bazen sadece Standart Model) adı verilen bir modele göre atomlar evrenin yaklaşık yüzde 5’ini oluşturur. Karanlık madde, karanlık enerji ile aynı şey değildir. Standart Model’e göre karanlık enerji evrenin yaklaşık yüzde 68’ini oluşturur.

Karanlık madde görünmezdir; ışık veya X-ışınları veya radyo dalgaları gibi herhangi bir elektromanyetik radyasyon yaymaz, yansıtmaz veya emmez. Bu nedenle, evrene dair tüm gözlemlerimiz, kütle çekim dalgalarını tespit etmenin yanı sıra teleskoplarımızda elektromanyetik radyasyonu yakalamayı içerdiğinden, aletler karanlık maddeyi doğrudan tespit edemez.

Yeni gözlemler Evrenin mevcut genişleme hızını sorgulamaya devam ediyor. Büyük Patlama’nın art ışımasından elde edilen kanıtlar, Evren’in “son genişlemesi” ile açıkça çelişiyor; bu anomali “Hubble gerilimi” şekline ifade ediliyor.

“Artık o kadar çok veriye sahibiz ki, 21. yüzyılda nihayet şu soruyu cevaplayabiliriz: Karmaşıklıktan basit bir ortalama genişleme yasası nasıl ve neden ortaya çıkıyor?” sorunu soran Wiltshire, “Einstein’ın genel görelilik kuramıyla uyumlu basit bir genişleme yasasının Friedmann denklemine uyması gerekmez” diyor.

Friedmann denklemi, genel görelilik kapsamında homojen ve izotropik modellerde evrenin genişlemesini belirleyen denklemlerdir. Evrenin yoğunluğu, yeterince büyük bir hacim göz önüne alınarak ve gözlenen kütle ölçülerek bulunur. Bu kütleyi belirlemek için, bu hacim içinde gözlenen parlak galaksiler sayılır ve bu sayı ortalama bir galaksinin kütlesiyle çarpılır.

Bir galaksinin kütlesinin, galaksinin sarmal ya da elips biçiminde olduğu belirtildiğinde, ortalama olarak türünü temsil ettiği varsayılır. Bu yöntemlerden birinde, galaksi merkezi çevresinde dönen gaz bulutlarının yaydığı 21 cm hidrojen çizgisi ölçülür ve galaksi merkezinden itibaren ölçülen çeşitli uzaklıklar için dönme hızı, çizgi genişliklerinden çıkarılır. Buradan da merkezcil ve kütleçekim kuvvetinin eşit olduğu bilindiğinden kütle hesaplanabilir.

Paylaşın

Kara Delikler Ve Karanlık Enerjinin Gizemi: Birbirleriyle Bağlantılı Olabilir Mi?

Bilim insanları, evrenin hızlı genişlemesini açıklamak için karanlık enerjiye güvenirken, evrenin hızlı genişlemesinin nedeni veya nedenleri kozmolojideki en büyük sorulardan biri olmaya devam ediyor.

Haber Merkezi / Yeni bir teori, şu ana kadar konuya ilişkin teorilere meydan okuyor: Kara delikler karanlık enerjinin kaynağı olabilir mi ?

Araştırmalar, kara deliklerin “kozmolojik olarak eşleşmiş” olabileceğini, yani kara deliklerin büyümelerinin doğrudan evrenin genişlemesine bağlı olduğunu öne sürüyor. Daha basit bir ifadeyle, evren büyüdükçe kara delikler de büyüyor. Bu bağlantı her iki yönde de kabul edilebilir: kara deliklerin genişlemesi evrenin büyümesini aktif olarak yönlendirebilir.

Bu teori, ilk olarak 1960’larda kara delik fiziğinin erken dönem çalışmaları sırasında öne sürülen fikirlere dayanmaktadır: Kara deliklerin karanlık enerji ürettiğini ileri sürülmektedir. Bir kara delik bir yıldız veya yıldızlararası madde gibi bir madde tükettiğinde, yalnızca yoğun kütle çekim etkileri üretmekle kalmaz, aynı zamanda karanlık enerjinin oluşmasına da katkıda bulunur.

Bilim insanları, be teoriyi test etmek için evrenin boyutunu çeşitli zaman noktalarında haritalayan Karanlık Enerji Spektroskopik Aleti’nden (DESI) gelen verileri analiz ettiler. Bilim insanları ardından, bu bilgiyi evrendeki bilinen yıldız oluşumu oranlarıyla birleştirerek, kara deliklerin büyümesinin evrenin genişlemesiyle uyumlu olup olmadığını değerlendirmek için bir model oluşturdular.

Sonuçlar, kara delik büyümesi ile kozmik genişleme arasında çarpıcı bir ilişki olduğunu ortaya koydu ve karanlık enerjinin yıldızların ve geride bıraktıkları kara deliklerin yaşam döngüsüyle bağlantılı olabileceğini düşündürdü.

Kara delikler gerçekten karanlık enerji üretiyorsa, bu kozmolojideki birkaç kalıcı soruyu çözebilir. Birincisi, uzun zamandır genel görelilik teorisi için bir sorun olan kara deliklerin merkezlerindeki tekilliklere (sonsuz yoğunluk noktaları) olan ihtiyacı ortadan kaldırabilir. Ek olarak, evrenin ivmesinin keşfinden beri bir gizem olan karanlık enerjinin kökenine dair bir açıklama sunar.

Teori ayrıca evrenin genişleme oranının ölçümlerindeki bir tutarsızlık olan Hubble gerginliğine de ışık tutuyor. Galaksilere dayalı gözlemler megaparsek başına saniyede 72,8 kilometrelik bir genişleme oranı verirken, Büyük Patlama’nın artçı ışıması olan kozmik mikrodalga arka planından (CMB) gelen veriler megaparsek başına saniyede 67,4 kilometrelik daha yavaş bir oran öneriyor, bu değerler birbiriyle örtüşmüyor.

Ancak, karanlık enerji kara deliklerden kaynaklanıyorsa, CMB’den çıkarılan genişleme oranı megaparsek başına saniyede 70 kilometreye yakın bir değere kayacak ve galaksi tabanlı ölçümlerle daha yakın bir uyum sağlayacaktır. Bu düzenleme, çelişkili verileri uzlaştırabilir.

Bilim insanları, şimdi daha fazla kanıt toplamaya odaklanarak, karanlık enerjili kara deliklerin var olup olmadığını ve evreni nasıl etkilediklerini belirlemeyi amaçlıyor.

Kara deliklerin karanlık enerji için fabrikalar olarak hizmet edebileceği fikri, keşfedilmemiş topraklara atılmış cesur bir adımdır. Çoğu şey teorik olarak kalsa da, yeni teori hem evrenin genişlemesini hem de onu yönlendiren gizemli güçleri anlamanın yeni yollarına kapı aralıyor.

Kara delikler evrenin en büyük gizemlerinden birini çözmenin anahtarı olabilir mi? Bunu ancak zaman ve daha fazla araştırma gösterecek.

Paylaşın

Kara Delikler Evrenin Genişlemesini Yönlendiriyor Olabilir

Bilim insanları, evrenin hızlanan genişlemesini yönlendiren ve gizemli enerji olarak tanımlanan karanlık enerjinin kara deliklerle bağlantılı olabileceğine dair kanıtlar bulmuş olabilir.

Haber Merkezi / Karanlık enerji, evrenin yaklaşık yüzde 70’ini oluşturuyor ve 13,8 milyar yıl önce gerçekleşen Büyük Patlama’nın ardından ortaya çıkan evrenin büyümesini yönlendirdiği düşünülüyor.

Ancak gizemli enerjinin tam olarak nereden geldiği ise belirsizliğini koruyor. Son yıllarda bazı bilim insanları, karanlık enerjinin tüm evrene yayılmak yerine devasa kara deliklerin merkezinde yer alabileceğini öne sürüyorlar.

Journal of Cosmology and Astroparticle Physics’te yayınlanan yeni bir araştırma, görünüşte ilgisiz bu iki olgu arasında bir bağlantı olduğuna dair ilk ipuçlarını bulduğunu iddia ediyor: Evren yaşlandıkça artan karanlık enerji yoğunluğu ile büyüyen kara deliklerin kütlesi arasındaki bir eşleşme.

Michigan Üniversitesi’nden Fizik Profesörü Gregory Tarle, “Kendinize ‘Evrenin sonraki dönemlerinde yer çekimini evrenin başlangıcındaki kadar güçlü olarak nerede görüyoruz?’ sorusunu sorarsanız, cevap kara deliklerin merkezindedir” dedi ve ekledi:

“Büyüme sırasında olanların tersine işlemesi, kütleli bir yıldızın maddesinin yer çekimi çöküşü sırasında tekrar karanlık enerjiye dönüşmesi mümkün, tıpkı tersten küçük bir Büyük Patlama gibi.”

Bilim insanları, kranlık enerjinin kara deliklerle bağlantılı olabileceğine dair ipuçları aramak için, ABD’nin Arizona Eyaleti’ndeki Nicholas U. Mayall 4 metrelik Teleskobu’na monte edilmiş Karanlık Enerji Spektroskopik Aleti’ni (DESI) kullandılar. DESI, evrenin günümüze kadar nasıl genişlediğini incelemek için milyonlarca galaksinin aylık konumlarını belirliyor.

Bilim insanları, evrenin farklı evrelerinde karanlık enerji ile kara delik büyümesine ilişkin verileri karşılaştırarak ilgi çekici bir gözlemde bulundular.

Hawaii Üniversitesi’nden Fizik Doçenti Duncan Farrah, yeni kara delikler oluştukça, evrendeki karanlık enerji miktarının da doğru şekilde artığını belirterek, “Bu, kara deliklerin karanlık enerjinin kaynağı olması ihtimalini daha da makul kılıyor” dedi.

Hipotez doğrulanırsa, ile ilgili bir bilmeceyi çözmeye yardımcı olabilir. Gregory Tarle, “Temel olarak, kara deliklerin, içinde var oldukları evrenle bağlantılı olarak karanlık enerji olup olmadığı artık sadece teorik bir soru olmaktan çıktı, bu artık deneysel bir soru” ifadelerini kullandı.

Paylaşın

En Hızlı Dönen Nötron Yıldızı Keşfedildi

Uluslararası bir araştırma ekibi, en hızlı dönen nötron yıldızlarından birinin keşfini duyurdu. Dünya’dan 26 bin ışık yılı uzaklıkta yer alan nötron yıldızı saniyede 716 kez dönüyor.

Haber Merkezi / Nötron yıldızları, bir atomun çekirdeği kadar yoğundur. Birkaç on kilometre çapındaki bir nötron yıldızın kütlesi Güneş’in kütlesine eşdeğerdir. Nötron yıldızlarının karakteristik özelliklerinden biri de muazzam dönme hızlarıdır.

Gökbilimciler, saniyede 716 devir gibi şaşırtıcı bir hızla dönen böyle bir nötron yıldızı keşfetmeyi başardılar. Keşfedilen nötron yıldızı, Samanyolu Galaksisi’nin merkezine yakın, Dünya’dan 26 bin ışık yılı uzaklıkta yer almaktadır.

4U 1820-30 adlı ikili sistemin bir parçası olan nötron yıldızının kütlesi Güneş’in 1,4 katı ve çapı yalnızca 12 kilometredir.

4U 1820-30 sistemindeki nötron yıldızı Evren’de gözlemlenen en hızlı dönen nesnelerden biri. Dünya’dan yaklaşık 18 bin ışık yılı uzaklıktaki Terzan 5’te bulunan başka bir nötron yıldızı PSR J1748-2446, dönüş hızı açısından onunla eşleşebilir.

Nötron yıldızı nedir?

Nötron yıldızları, süpernova patlamalarından arta kalan maddelerin kütleçekimi etkisiyle çökmesiyle meydana gelir. Bu yıldızlar neredeyse tamamen nötronlardan oluşsa da az miktarda proton ve elektron da içerir. Bu proton ve elektronlar olmadan nötron yıldızları uzun süre var olmaya devam edemezdi.

Çünkü nötronlar serbest haldeyken kararsızdır ve beta ışıması yaparak kısa süre içinde proton ve elektronlara ayrışır. Ancak yıldızın içindeki yüksek basınç sebebiyle proton ve elektronların birleşerek nötronlara dönüşmesi, nötron yıldızlarının daha kararlı bir yapıya sahip olmasını sağlar.

Nötron yıldızlarının kütleleri Güneş’inkinin 1,44 ila 3 katı olabilir. Bugüne kadar gözlemlenmiş en büyük nötron yıldızının kütlesi ise Güneş’inkinin yaklaşık iki katıdır. Samanyolu içinde yaklaşık 2000 nötron yıldızı olduğu biliniyor. Güneş Sistemi’ne en yakın nötron yıldızları, yaklaşık 400 ışık yılı uzaklıktaki RX J1856.5-3754 ve yaklaşık 424 ışık yılı uzaklıktaki PSR J0108-1431’dir.

Nötron yıldızlarının kütleleri çok büyük olmasına rağmen hacimleri çok küçüktür. Örneğin kütlesi Güneş’inkinin yaklaşık 1,5 katı olan bir nötron yıldızının çapı sadece 10 kilometre civarındadır. Bu durum nötron yıldızlarının yoğunluklarının çok yüksek olmasına neden olur. Öyle ki nötron yıldızlarının yoğunlukları Güneş’inkinin 2,6 x 1014 ila 4,1 x 1014 katıdır.

Nötron yıldızlarının kütleçekimi etkisiyle daha fazla küçülmemelerinin nedeni, Pauli dışarlama ilkesidir. Bu ilke, fermiyon grubu iki parçacığın -örneğin protonlar, elektronlar ve nötronlar- aynı konuma ve aynı kuantum durumuna sahip olamayacağını söyler.

Bu yüzden kütlesi Güneş’inkinin üç katından az olan nötron yıldızlarının yoğunluğu atom çekirdeğindeki yoğunluklar düzeyine ulaştığı zaman çökme durur. Ancak kütlesi Güneş’inkinin beş katından fazla olan nötron yıldızları kararsızdır ve çökmeye devam ederler. Bu yıldızlar karadeliğe dönüşür.

Bazı nötron yıldızlarının kendi etrafındaki dönme hızı çok büyüktür. Bu durumun nedeni -açısal momentumun korunumu yasası gereği- yıldızın hacmi azaldıkça kendi etrafındaki dönme hızının artmasıdır. Bilinen nötron yıldızları içinde kendi etrafında dönme hızı en yüksek olan PSR J1748-2446ad’dir. Bu yıldız her saniye kendi etrafında yaklaşık 716 defa döner.

Bazı nötron yıldızlarının radyo dalgaları ve X-ışınları yaydığı gözlemlenmiştir. Pulsar ya da atarca adı verilen bu yıldızlardan yayılan dalgalar periyodiktir.

Bilinen nötron yıldızlarının yaklaşık %5’i ikili yıldız sistemlerinin üyeleridir. Bu sistemlerdeki nötron yıldızlarının eşleri normal yıldızlar, beyaz cüceler ya da başka nötron yıldızları olabilir. Genel görelilik kuramı, ikili yıldız sistemlerinin kütleçekimsel dalgalar yayacağını ve zaman içinde yıldızlar arasındaki mesafenin azalacağını söyler.

Kütleçekimsel dalgaların varlığı ile ilgili ilk kanıt, nötron yıldızı içeren bir ikili yıldız sisteminin gözlemlenmesi ve yıldızlar arasındaki mesafenin genel görelilik kuramının tahminleriyle uyumlu bir biçimde değiştiğinin bulunmasıyla elde edildi.

Paylaşın

Yaşanabilir Gezegenler Bulma Yolunda “Büyük Adım”

Dünya’dan yaklaşık 100 ışık yılı uzaklıkta yer alan ve GJ 9827 d olarak adlandırılan gezegen, Dünya’nın yaklaşık iki katı büyüklüğünde ve neredeyse tamamen su buharından oluşan bir atmosfere sahip.

Haber Merkezi / GJ 9827 d bildiğimiz yaşamı desteklemese de, benzersiz atmosferi, diğer küçük gezegenleri ve bu gezegenlerin yaşam barındırma potansiyellerini incelemek için yeni olasılıklar sunuyor.

Montréal Üniversitesi’nden Caroline Piaulet – Ghorayeb liderliğinde yapılan yeni bir araştırmada, GJ 9827 d’nin atmosferik bileşimini ölçmek için transmisyon spektroskopisi adı verilen bir teknik kullanıldı.

Transmisyon spektroskopisi, bir gezegenin atmosferi tarafından farklı dalga boylarında veya ışık renklerinde ne kadar yıldız ışığının emildiğini ölçer.

Piaulet – Ghorayeb, bugüne kadar ölçülen atmosferlere sahip neredeyse tüm dış gezegenlerin en hafif elementlerden, tıpkı güneş sistemindeki gaz devleri Jüpiter ve Satürn gibi hidrojen ve helyumdan oluştuğunu söyledi.

Piaulet – Ghorayeb, “GJ 9827 d, güneş sisteminin karasal gezegenleri gibi ağır moleküller açısından zengin bir atmosfer tespit ettiğimiz ilk gezegen” dedi ve ekledi: Bu çok büyük bir adım.

Piaulet – Ghorayeb, “Bilim insanlarının gelecekte yaşam arayabileceği gezegen türleri olacak” diye ekledi.

GJ 9827 d ilk olarak 2017 yılında Kepler Uzay Teleskobu tarafından tespit edilmişti. Daha sonra, Hubble Uzay Teleskobu gezegenin atmosferinde su buharı izleri bulmuştu.

Bir gezegenin atmosferde su buharının izlerini tespit etmekle, atmosferin su buharıyla kaplı olduğunu söylemek arasında büyük bir fark var.

Bilim insanları, bu farkı ortaya koymak için James Webb Uzay Teleskobu’nun (JWST) Yakın Kızılötesi Görüntüleyici ve Yarıksız Spektrografı veya NIRISS ile yeni gözlemleri kullandılar.

Araştırmada yer alan bilim insanları, yıldızının önünden geçerken veya geçiş yaparken GJ 9827 d’nin atmosferinden geçen ışığın spektrumunu yakalamak için JWST’yi kullandılar.

Paylaşın

Kozmolojideki En Büyük Kriz Çözülmüş Olabilir

James Webb Uzay Teleskobu kullanılarak yapılan yeni ölçümler, yerel Evrenin bizden saniyede megaparsek başına yaklaşık 70 kilometre (yaklaşık 43 mil) hızla uzaklaştığını gösteriyor.

Bu doğruysa, bilim insanlarını bir asırdır meşgul eden Evrenin hızlanan genişlemesinin ölçümleri arasındaki tutarsızlık çözülebilir.

Bilim insanları, James Webb Uzay Teleskobu’nun evrenin erken dönemlerinde kozmolojinin temellerini sarsan “imkansız” canavar galaksiler bulmaya devam etmesinin ardında yatan nedene dair bir açıklamaya nihayet sahip.

Öncü Webb teleskobu Temmuz 2022’de bilimsel çalışmalarına başladığından bu yana, evrendeki konumları göz önüne alındığında olması gerekenden çok daha büyük ve olgun görünen yaklaşık yarım düzine devasa galaksi tespit etti.

Bu canavar galaksilerden bazılarının, evren şu anki yaşının sadece yüzde 3’ü kadarken Samanyolu kadar büyük olduğu tespit edilmiş ve bu bulgu kozmoloji dünyasını sarsmıştı.

Bu bulgular ya kozmosun muhtemelen düşünülenden çok daha yaşlı olduğuna ya da özellikle evrenin başlangıcında galaksilerin nasıl oluştuğuna dair bilinmeyen bir şeyler olduğuna işaret ediyordu.

An itibarıyla, pazartesi günü The Astrophysical Journal’da yayımlanan yeni bir çalışma, bu erken galaksilerin ilk göründüğünden çok daha az devasa olduğunu gösteriyor.

Çalışmanın ortak yazarı Steven Finkelstein, “Sonuç olarak, kozmolojinin standart modeli açısından bir kriz yok” dedi.

Austin’deki Teksas Üniversitesi’nden araştırmacılar, bu erken galaksilerin bazılarındaki kara deliklerin onları olduklarından çok daha parlak ve büyük gösterdiğini söylüyor.

Araştırmacılar bu galaksilerin büyük görünmelerinin sebebinin ev sahibi kara deliklerin hızla gaz tüketmesi olduğunu belirtiyor.

Çalışmaya göre, bu hızlı hareket eden gaz parçacıkları arasındaki sürtünme, daha fazla ısı ve ışık yaymalarına yol açarak galaksileri olması gerekenden çok daha parlak hale getiriyor.

Dr. Finkelstein, “Zamana bu kadar uzun süre meydan okuyan bir teori olduğunda, onu gerçekten çöpe atmak için çok büyük kanıtlara sahip olmanız gerekir. Ve durum böyle değil” dedi.

Bununla birlikte, evrenin erken dönemlerinde yeni çalışmanın açıklayamadığı bazı dev galaksiler hâlâ var.

Bilim insanları, evrenin erken dönemlerinde yıldızların nasıl oluştuğuna dair henüz bilinmeyen bir yolun bu vakaları açıklayabileceğini söylüyor.

Yıldızlar, sıcak gazın soğuyup yerçekimine yenik düşmesi ve yoğunlaşmasıyla oluşuyor. Ancak bu gaz bulutu büzüldükçe, sonunda ısınıp zıt bir dış basınç oluşturuyor.

Kozmosun bizim bulunduğumuz kısmında, bu karşıt güçler yıldız oluşumunu yavaş bir süreç haline getiriyor ancak çok daha yoğun olan erken evrende, bilim insanları büzülme çekiminin daha büyük olabileceğinden ve sürecin daha hızlı ilerlemesine izin verdiğinden şüpheleniyor.

Dolayısıyla araştırmacılar, bu kafa karıştırıcı gözlemlerin bazılarının yıldız oluşum fiziğindeki “küçük değişikliklerle” açıklanabileceğini söylüyor.

Çalışmanın bir diğer yazarı Katherine Chworowsky, “Belki de evrenin erken dönemlerinde galaksiler gazı yıldızlara dönüştürmede daha iyiydi” dedi ve ekledi: Hâlâ tahmin edilenden daha fazla galaksi görüyoruz ancak bunların hiçbiri evreni ‘kıracak’ kadar büyük değil.

(Kaynak: Independent Türkçe)

Paylaşın

Evren Hakkında Çığır Açan Keşif

Yaklaşık 130 bin galaksiye ait görüntüleri inceleyen bilim insanları, evrene dair anlayışımızı değiştirebilecek yeni kanıtlara ulaştı. Bilim insanları, karanlık madde teorisinin gerçek olmayabileceğini öne sürdü.

Çalışmada yer alan araştırmacı Tobias Mistele, “Ya karanlık madde haleleri düşündüğümüzden çok daha büyük ya da kütleçekime dair anlayışımızı temelden gözden geçirmemiz gerekiyor” dedi.

Bilim dünyası bir yandan karanlık madde teorisini destekleyecek daha güçlü kanıtlar ararken, bir yandan da farklı teorilerle evrendeki tuhaf durumlara açıklık getirmeye çalışıyor.

Bilim insanları galaksilerin merkezinden uzaktaki cisimlerin, daha düşük bir kütleçekim kuvvetine maruz kalmasından dolayı daha yavaş hareket etmesi gerektiğini düşünüyor.

Öte yandan bugüne kadar yapılan gözlemlerde, uç kısımlardaki yıldızların da merkezdekilere yakın hızlarda döndüğü görüldü. Bu durumu karanlık madde teorisiyle açıklayan gökbilimciler, bu görünmez maddenin yarattığı kütleçekim kuvvetinin yıldızları etkilediğini öne sürüyor.

Bu teoriye göre galaksilerin merkezinden 300 bin ışık yılı mesafeye uzanan, hale şeklinde karanlık madde kümeleri var. Bundan daha uzağa gidildiğinde yıldızların daha yavaş hareket etmeye başlaması gerekiyor.

Fakat The Astrophysical Journal Letters adlı hakemli dergide yakın zamanda yayımlanan bir makalede merkezden 1 milyon ışık yılı uzaktaki yıldızların, mevcut karanlık ve görünür madde teorileriyle açıklanamayacak hızlarda dönmesi gerektiği öne sürüldü.

Avrupa Güney Rasathanesi’nin Şili’deki VLT Tarama Teleskobu tarafından çekilen yaklaşık 130 bin galaksiye ait görüntüleri inceleyen araştırmacılar, kütleçekimsel merceklenme denen bir olgudan yararlandı.

Kütleçekimsel merceklenme, galaksiler gibi büyük kütleli cisimlerin, uzak bir kaynaktan gelen ışığı bükmesini ifade ediyor. Merceklenmeye dair incelemeler, galaksinin hem görünür madde hem de çok daha yüksek miktarda olduğu varsayılan karanlık madde miktarına dair fikir veriyor.

Bilim insanları kütleçekimsel merceklenme verilerine dayanarak galaksilerin merkezinden 1 milyon, hatta belki 3 milyar ışık yılı ötedeki yıldızların, görünür ve karanlık madde miktarıyla açıklanamayacak hızda dönmesi gerektiğini öne sürdü.

Bulgular ya karanlık maddenin daha yüksek miktarda olması gerektiğine ya da bu teorinin temelden yanlış olduğuna ve galaksilerdeki hareketlerin farklı şekilde açıklanabileceğine işaret ediyor.

Çalışmanın yazarlarından Tobias Mistele, “Bu keşif mevcut modellere meydan okuyor” diyor: Ya karanlık madde haleleri düşündüğümüzden çok daha büyük ya da kütleçekime dair anlayışımızı temelden gözden geçirmemiz gerekiyor.

Galaksilerin uç kısımlarındaki tuhaf hareketleri karanlık maddeye gerek kalmadan açıklayan seçenekler arasında Değiştirilmiş Newton Dinamiği (Modified Newtonian Dynamics / MOND) teorisi var. Bu teoriye göre Isaac Newton’ın kütleçekim yasası sadece bir noktaya kadar geçerli ve yüksek dönme hızlarında farklı türde bir davranış devreye giriyor.

Makalenin ortak yazarı Stacy McGaugh, gözlemlerin bu teoriyle açıklanabileceğini düşünüyor.

Bilim dünyası bir yandan karanlık madde teorisini destekleyecek daha güçlü kanıtlar ararken, bir yandan da farklı teorilerle evrendeki tuhaf durumlara açıklık getirmeye çalışıyor.

Avrupa Uzay Ajansı’nın geçen yıl fırlatılan Euclid Uzay Teleskobu’nun daha iyi kütleçekimsel merceklenme verileri sağlaması bekleniyor. Teleskobun gözlemleri galaksilerin uç kısımlarındaki gizemin aydınlatılmasına katkı sunabilir.

(Kaynak: Independent Türkçe)

Paylaşın